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1. INTRODUCTION 
 

There is a growing trend towards 
seamless prediction: incorporating weather, 
medium-range, seasonal and ultimately climate 
change prediction in the same ensemble 
forecasting system (Dole, 2006; Palmer et al. 
2008; Vitart et al. 2008).  This is indeed the goal 
of the Bureau of Meteorology (BoM) with the 
development of the new Australian Community 
and Earth System Simulator (ACCESS, Puri, 
2006).   

Currently at the BoM, dynamical 
seasonal and interannual prediction is based on 
the Predictive Ocean Atmosphere Model for 
Australia (POAMA) (http://poama.bom.gov.au). 
Until recently it has not been possible to use 
POAMA for intra-seasonal or monthly 
forecasting.  This is because for the 
retrospective forecasts (or hindcasts), the 
atmosphere and land components of the 
dynamical model were initialized from an AMIP-
style atmosphere-only simulation.  Thus, the 
initial conditions contained observed 
atmospheric and land information which is 
related to sea-surface temperature, but they did 
not capture the true intra-seasonal state.  
However, the Centre for Australian Weather and 
Climate Research (CAWCR) has recently 
introduced a new version of POAMA (Wang et 
al., 2008) which incorporates a new Atmosphere 
and Land Initialisation (ALI) scheme, developed 
as part of the ACCESS project (Hudson and 
Alves, 2007).  This new system has the potential 
to bridge the gap between weather and seasonal 
forecasting, since forecasts in the 10-60 day 
range are influenced by initial conditions of the 
atmosphere and land, as well as the ocean.  The 
subseasonal scale, particularly from the second 
week to the first month of the forecast, is, 
however, notoriously difficult to predict.   

In this paper, we examine the intra-
seasonal forecast skill of our hindcast dataset, 
focusing on minimum and maximum 
temperatures and precipitation over Australia.  
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2. POAMA MODEL & HINDCAST DATASET 
 

The atmospheric model component of 
POAMA is the BoM’s atmospheric model (BAM 
version 3.0; Colman et al. 2005; Wang et al. 
2005; Zhong et al. 2006) which has a T47 
horizontal resolution and 17 levels in the vertical.  
The land surface component is a simple bucket 
model for soil moisture (Manabe and Holloway 
1975) and has three soil levels for temperature.  
The ocean model is the Australian Community 
Ocean Model version 2 (ACOM2; Schiller et al. 
2002), and is based on the Geophysical Fluid 
Dynamics Laboratory Modular Ocean Model 
(MOM version 2).  The ocean grid resolution is 
2º in the zonal direction and in the meridional 
direction it is 0.5º at the equator and gradually 
increases to 1.5º near the poles.  The 
atmosphere and ocean models are coupled 
using the Ocean Atmosphere Sea Ice Soil 
(OASIS) coupling software (Valcke et al. 2000).  
The ocean data assimilation scheme is based on 
the optimum interpolation technique of Smith et 
al (1991).   

This study uses version 1.5 of POAMA 
(operational at BoM since January 2008) which 
obtains atmospheric initial conditions from the 
previously mentioned ALI scheme (Hudson and 
Alves, 2007).  ALI involves the creation a new 
reanalysis dataset using the atmospheric model 
of POAMA.  The scheme generates realistic 
atmospheric initial conditions, as well as land 
surface initial conditions that are in balance with 
this atmospheric forcing. 

The hindcast dataset used is a 10-
member ensemble, with forecasts of 9 months 
duration, starting on the first day of every month 
for 1980 to 2005.  For any given start month for 
each of these years, a lead-time dependent 
ensemble mean and model climatology is 
created.  The ensemble mean forecast (or 
individual ensemble member) is compared 
against this climatology to create anomalies, and 
in so doing a first-order linear correction for 
model bias or drift is made 
 
3. INTRASEASONAL SKILL 
 

Here we assess the skill of POAMA in 
predicting the first and second fortnight of the 
forecast (average of days 1-14 and 15-28).  
Since POAMA uses realistic atmospheric 
(although degraded compared to that used in 
NWP) and ocean initial conditions the skill of 



forecasts for the first week is high.  However, 
after the first week the spread of the ensemble is 
large and the forecasts are inherently 
probabilistic.  We thus focus on probabilistic 
forecasts of exceeding tercile thresholds and 
use the relative operating characteristic (ROC) 
area and ROC curve for verification (e.g. Mason 
and Graham, 1999; Joliffe and Stephenson, 
2003).  For calculation of the tercile thresholds 
we use data for all years except the one under 
consideration (leave-one-out cross validation).  
ROC curves provide information on forecast 
resolution by measuring the ability of a forecast 
to discriminate between the occurrence and non-
occurrence of an event.  We also show some 
deterministic verification in the form of anomaly 
correlation. The BoM high quality gridded data 
were used for the observed data. 
 
3.1 Precipitation 
 

Figure 1 shows the anomaly correlation 
skill for precipitation for the first and second 
fortnights for all forecast start months.  The 
degradation in skill in the second half of the 
month is very clear, and most of the skill in the 
first fortnight comes from the first week of the 
forecast.  Skill in the second fortnight varies a 
great deal as a function of region and forecast 
start month.  It is highest over south-eastern 
Australia and in the months from July to October 
(JASO) (Figure 2).  

 
Fig. 1: Precipitation anomaly correlation for all 
forecast start months for the first and second 
fortnights of the forecast. Significant correlations 
are shaded (t-test, n=312, r>0.1 is significant at 
p=0.05). 

 
Fig. 2: Precipitation anomaly correlation for July, 
August, September and October forecast start 
months for the second fortnight of the forecast. 
Significant correlations are shaded (t-test, 
n=104, r>0.19 is significant at p=0.05). 

Figure 3 shows the ROC score 
(normalised area under the ROC curve) of the 
probability that precipitation averaged over the 
second fortnight is in the lower or upper tercile 
for the same forecast start months (JASO).  
Again the skill over the south-east is apparent.  
The model appears to be slightly better at 
forecasting events falling in the upper tercile 
than in the lower tercile.  For both categories, 
much of the south-east has skill greater than the 
climatological value of 0.5.  In addition, the 
model performs significantly better in the second 
fortnight compared to persisting forecast 
probabilities of the first fortnight.   

ROC curves for the south-east are 
displayed in Figure 4.  For skilful forecasts the 
ROC curve bends towards the top left corner of 
the plot, where hit rates exceed false alarm 
rates.  A curve lying close to the diagonal (i.e. 
ROC area≈0.5) has little skill and one lying 
below the diagonal has negative skill (i.e. ROC 
area<0.5).  The curves in Figure 4 show the 
decline in skill from the first to the second 
fortnight, with useful skill still prevailing in the 
latter.  As shown in Figure 3, the model provides 
more skill in the second fortnight than simply 
persisting the forecast from the first fortnight 
(Figure 4). 

 
 
 
 
 
 
 

 
Fig. 3: ROC area (score) of the probability that 
precipitation averaged over the second fortnight 
is in the lower (left) or upper (right) tercile for 
July, August, September and October forecast 
start months. ROC scores above 0.55 are 
shown.  The lower panel shows the ROC areas 
obtained by persisting the probabilities from the 
first fortnight. 



 
Fig. 4:  ROC curves of the probability that 
precipitation averaged over the first (top) and 
second fortnights (bottom) is in the upper (red) 
or lower (blue) tercile.  The dotted lines in the 
second fortnight plot are the ROC curves 
obtained by persisting the probabilities from the 
first fortnight.  The ROC score, or area under 
each ROC curve (A) is also shown.  ROC curves 
are obtained from July, August, September and 
October forecast start months for the south-east 
of Australia (map inset). 
 
3.2 Maximum Temperature 
 

Anomaly correlation skill for maximum 
temperature is generally higher than that for 
precipitation, particularly for the first fortnight 
(Figure 5).  For the second fortnight, skill is 
greatest in the latter half of the year and is 
focussed on the south-east, e.g. see Figure 6 for 
forecast start months August, September, 
October and November (ASON). 

 
Fig. 5: Maximum temperature anomaly 
correlation for all forecast start months for the 
first and second fortnights of the forecast. 
Significant correlations are shaded (t-test, 
n=312, r>0.1 is significant at p=0.05). 

 
Fig. 6: Maximum temperature anomaly 
correlation for August, September, October and 
November forecast start months for the second 
fortnight of the forecast. Significant correlations 
are shaded (t-test, n=104, r>0.19 is significant at 
p=0.05). 
 
 

The ROC scores for maximum 
temperature falling in the upper tercile shows 
some useful skill for forecast start months ASON 
(Figures 7 and 8).  Over the eastern part of 
Australia the ROC score exceeds 0.5, 
suggesting that the model performs better than 
climatology.  In addition, for the second fortnight, 
the model provides more skill than just persisting 
the forecast probabilities from the first fortnight 
(Figures 7 and 8). 

 
 

 
Fig. 7: ROC area (score) of the probability that 
maximum temperature averaged over the 
second fortnight is in the upper tercile for 
August, September, October and November 
forecast start months. ROC scores above 0.55 
are shown.  The lower panel shows the ROC 
areas obtained by persisting the probabilities 
from the first fortnight. 



 
Fig. 8:  ROC curves of the probability that 
maximum temperature averaged over the first 
(top) and second fortnights (bottom) is in the 
upper tercile.  The dotted line in the second 
fortnight plot is the ROC curve obtained by 
persisting the probabilities from the first fortnight.  
The ROC score, or area under each ROC curve 
(A) is also shown.  ROC curves are obtained 
from August, September, October and 
November forecast start months for the south-
east of Australia (map inset). 
 
3.3 Minimum Temperature 
 

Of the three variables analysed, 
minimum temperature is the least skilful, 
particularly for the second fortnight (Figure 9).  
This is also true for the probabilistic forecasts 
(not shown). 

 

 
Fig. 9: Minimum temperature anomaly 
correlation for all forecast start months for the 
first and second fortnights of the forecast. 
Significant correlations are shaded (t-test, 
n=312, r>0.1 is significant at p=0.05). 
 

 
4. CASE STUDIES 
 

We have shown that the model has 
some skill in predicting the second fortnight of 
the forecast.  The question is, when the model 
gets it correct, is it getting it right for the correct 
synoptic reasons?  Under what circumstances 
does the model produce a good forecast?  In the 
presentation we analyse some case studies in 
an attempt to answer some of these questions. 
 
5. CONCLUSIONS 
 

This initial examination of intra-seasonal 
skill of POAMA is promising.  There are definite 
indications of useful skill for certain regions at 
certain times of the year.  Over south-eastern 
Australia, for the forecast of the second fortnight 
(average days 15-28) the model performs 
generally better than the persistence of 
probabilities from the first fortnight (average 
days 1-14) and better than climatology. The 
model seems less skilful for minimum 
temperature compared to either maximum 
temperature or precipitation.   

The next version of POAMA may 
provide some improvements in skill, since it has 
a higher atmospheric model resolution (T63).  
Perhaps more importantly, the new hindcast 
dataset planned for the next version will be 
designed to incorporate intra-seasonal prediction 
(one forecast start date per month, as in the 
current hindcast set, is not sufficient). 

A significant limitation of the current 
version of POAMA is its simple land surface 
model.  There may be benefits for intra-seasonal 
forecasting from improving the initialisation and 
simulation of the land surface, primarily due to 
soil moisture memory in the earth-atmosphere 
system.  Here we are hoping that the future 
transition to the ACCESS model, which has the 
more complex and flexible CABLE land surface 
model, will be advantageous for intra-seasonal 
and seasonal prediction. 
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